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Bethe ansatz solution of zero-range process with nonuniform stationary state
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The eigenfunctions and eigenvalues of the master equation for zero-range process with totally asymmetric
dynamics on a ring are found exactly using the Bethe ansatz weighted with the stationary weights of particle
configurations. The Bethe ansatz applicability requires the rates of hopping of particles out of a site to be the
g numbers[n],. This is a generalization of the rates of hopping of noninteracting particles equal to the
occupation numben of a site of departure. The noninteracting case can be restored in theglimlt The
limiting cases of the model fog=0,~ correspond to the totally asymmetric exclusion process, and the
drop-push model, respectively. We analyze the partition function of the model and apply the Bethe ansatz to
evaluate the generating function of the total distance traveled by particles at large time in the scaling limit. In
case of nonzero interactiom,# 1, the generating function has the universal scaling form specific for the
Kardar-Parizi-Zhang universality class.
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[. INTRODUCTION dramatically from one point of phase space to another. Typi-
. cal example is the zero-range proc€8RP) served as a pro-

The Bethe ansal] is one of the most powerful to0ls 10 otype of a one-dimensional nonequilibrium system exhibit-
get exact results for the systems with many interacting dejng the condensation transitiofL4]. While its stationary

grees of freedom in low dimensions. The exact solutions ofeasure has been studied in defaB], the full dynamical
one-dimensional quantum spin chains and “No'dime”SiO”%escription is still absent.

vertex models are classical examples of its applicgtgnin The aim of this paper is to obtain the Bethe ansatz solu-

the last decade, the Bethe ansatz was shown to be useful {8, of the ZRP. The paper is organized as follows. In Sec. I
study one-dimensional stochastic proces®d]. The first o yse the Bethe ansatz to solve the eigenfunction and ei-

and most explored example is the asymmetric simple exclugenyalue problem for the master equation of the ZRP and
sion proces¥ASEP), which serves as a testing ground for ghoy that its applicability requires the rates of hopping of
many concepts of the nonequilibrium statistical phy$ls  particles out of a site to be tienumbers. We show that with
Yet several other Bethe ansatz solvable models of nonequipis choice of the rates the model is equivalent togHmson
librium processes have been proposed such as the asymmgita|ly asymmetric diffusion model. In Sec. Il we obtain the
ric diffusion models[6,7], generalizations of the drop-push partition function of the ZRP with the rates obtained and
model [8-1(, and the asymmetric avalanche processgygluate some stationary correlations. In Sec. IV we apply

(ASAP) [11]. . , the equations obtained from the Bethe ansatz solution to de-
Most of the models studied by the coordinate Bethe antjye the expression for the generating function of the total

satz have a common property. That is, a system evolves tgistance traveled by particles in the large time limit. We sum-
the stationary state, where all the particle configurations 0Cqy4rize the results in Sec. V.

cur with the same probability. This property can be easily
understood from the structure of the Bethe eigenfunction.
Indeed, the stationary state is given by the ground state of !l- MASTER EQUATION OF ZERO-RANGE PROCESS

evolution operator, which is the eigenfunction with zero ei- | ot s consider the system pfparticles on a ring con-

genvalue and momentum. Such Bethe function does not degting of N sites. Every site can hold an integer number of

pend on particle configuration at all and results in the eQUinarticles. Every moment of time, one particle can leave any

probable ensemble. Except for a few successful attempts Q.. nied site, hopping to the next site clockwise. The rate of
apply the Bethe ansatz to systems with nonuniform Stations o ppingu(n;) depends only on the occupation numbenf

ary state, such as the ASEP with blockade] or defect the site of departuré. The stationary measure of such a

particle[13], there is not much progress in this direction. Brocess has been found to be a product medddiei.e., the

(?]n the otdher h"ti.nd many inte_rl_et;st_ing phytsical réhen(()jmen robability of configuratioqn;}, specified by the occupation
erJC ‘;‘3 ng d eni:;;c;n It?alosnt?gr?l |5r|1um sc))/rs Qi:]]:g’rm(')t?gnt_- numbers{n;,n,, ... ,ny}, is, up to the normalization factor,
y indu P Itionfl5, 1§, ! ' given by the weight

continuous flow transitioff17] become apparent from non-
trivial form of the stationary state, which changes

N

wi({n}) =TT f(ny), (1)
i=1

*Electronic address: povam@thsunZ.jinr.ru where one-site weighft(n) is
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"o FP{(x,X) = Py(x = 1,X) — uP{(x,X), (9)
fim=11 — 2 . . .
m=1 u(m) we can redefine this term to compensate the difference be-
tween EQs.(6) and (9). As a result we get the following
if n>0, andf(0)=1. constraint orP2(x,%,):
Let us consider the probabilify,(n,, ... ,ny) for N sites to 0 0 0
have occupation numbers, ... ,ny at timet. It obeys the Prxx=1)=(u=DP(x=1x) = (u=-2)P(x,x). (10)
master equation defined by the dynamics described: Thus, the solution of the free E@6), which satisfies the
N constraint(10), gives the solution of the master equation for
PNy o) = > [U(Ney + DP( g+ 10— 1,..) the ZRP in the domaim; <x,. Now, we can use the Bethe
=1 ansatz for the eigenfunction of the free equatién
et PO(xq, %) = €M(Aq 27,17,"2 + A, 17,°22,™). (12)
—u(ngPy(ng, ... .ny)]. (3 _ . .
Its substitution to Eq(6) results in the expression for the
Here, cyclic boundary conditiom_, =ny, is imposed. eigenvalue:

Another way to specify the configuration of system is to _
use the set of coordinates @f particles {x}={x, ... Xy}, N=p+z-2. (12
rather than occupation numbefs,, ... ,ny}, the two ways The ansatz11) to be consistent with the constraifit0), the
being completely equivalent. While the explicit form of the amplitudesA; , andA; ; should satisfy the relation
master equation in such notations is more complicated, it
turns out more appropriate for an analytic solution. The main A 2-u-(1-uz-7 (13)
idea of the solution is to use the Bethe ansatz for the function Ay 2-u-1-uz -z’

P?(xl, ... ,Xp) related with the solution of the master equation
Pi(Xq, ... Xp) as follows:

which together with the cyclic boundary conditions,
P2(x1,%) =P2(x,, %, +N), results in the system of two alge-
PX0, . Xo) :W({ni})P?(xl, %) @) braic equations. The first one is the following
~N__2-u-(1-uz-z
! 2-u-1-uwz-2z'

while the second can be obtained by the change z,.

(14)
A. Two-particle sector

To explain the details we first consider the case2 sub-
sequently generalizing it to the case of arbitraryWithout

loss of generality we can define B. Many-particle sector

ul) =1, u@=u>0. (5) To generalize these results to the case of arbitpdst us

consider the configuration with two neighboring sites

Now, we are going to show that the solutid®(x;,x,), of ~ —1) andx having occupation numbers andn, respectively.
the master equation for noninteracting particles, Let us explicitly write down the terms of the master equation
corresponding to the transition into and from this configura-

aPY(x1,%0) = PY(xy = 1,%p) + P2(%g, % — 1) = 2PY(x1, %), tion due to a particle jump into and from the skerespec-

(6) tively,

. : . . AP .. ,(x=1)™ )", ...)

is related with the solutio,(x;,X,) of the master equation

for the ZRP in the domaix; <x, through the relatior(4), = ... +tum+DP(...,(x- D™ (0", ..)
rovided that the former satisfies certain constraint. Indeed, m roan

\F/)vhen(xz—xl)zz, the equation for probabilit,(x;,x,) for TUMPC L= DROPN )+ e (19

the ZRP coincides with one for noninteracting partialés Here (x)" denotesn successive argumentsof the function

For x;=x,—1=x the equation for the ZRP Pi(X1, ... Xp). In terms ofP?(xl, ... Xp), which is related to

Pi(xq, ... ,Xp) according to Eq.(4), this equation looks as
AP, X+ 1) = Py (X = 1,X) + UP(X,x) = 2P(x,x+ 1) (7) follows:

can be obtained from E6) if we define P, (x= D)™ ()", ..)
- ... 0 _1\ym+1 n-1
P(xx) = }P?(x,x), ® = :)-u(n) X [Pi(..,(x=1)™H ()", ..)
u =P, (x=)M )" )]+ e (16)

which is consistent with Eq4). In the casex,=x;=%, Eq.  Note that in this form the coefficient before the term in
(6) contains the ternP?(x,x— 1) which is beyond the “al- square brackets is equal tién), i.e., does not depend on the
lowed” regionx; <Xx, and, thus, does not carry any physical numberm of particles in the sitéx—1). Thus, the rhs of the
content. To restore the correct equation for the ZRP master equation expressed throU@fmxl, ... Xp) is the sum
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of one-site factors similar to those in E(.6) for all non-

empty sites. Equating such term with one from the equation

for noninteracting particles,

p
HP(Xq, e X)) = 2 PO =1, ) = PO, )],
i=1

(17)
we obtain the following constraint fd??(xl, e Xp)
[u(n) = 1PY(...,(x),(x + 1)L, ..)
=D P (x+ D)L (x), (x+ )™,
j=2
=[u(n) - n]P%...,(x+1",..) =0. (18)

Such relations for alh are to be understood as a redefinition
for the terms outside of allowed region=<...<x, The
Bethe ansatz to be applicable, the relatid®) should be
reducible to the two-particle constraiit0). This can be

proved by induction. To this end, we assume that similar

relations includingu(k) are reducible for allk<<n. Then
starting from the relatioii18), which includes rateai(n), we
apply Eq.(10) to every pair(x,x—1) of arguments of the
function P?(. ..) under the sum and require the result to be
similar relation foru(n—1). We obtain the following recur-
rent formula for the rates

un)=1-A-wun-1), (19
which can be solved in terms of numbers
1-q"
=Inl,= —, 20
u(n) =[n]q 1-q (20)
where
q=u-1. (21)

Further generalization of two-particle results is straightfor-

a

PHYSICAL REVIEW E 69, 061109(2004)

ﬁ(z—w—(l—u)z,-—a

~N_(_q)p-1
AR T e,

(24)

which follow from the condition of compatibility of cyclic
boundary conditions with the constraiit0).

For the sake of convenience in the following discussion
we use the parametegrdefined in Eq(21) rather tharu. We
should note that the appearancegofiumbers as the condi-
tion of the Bethe ansatz integrability is not unexpected. The
notion ofq deformation naturally appears in context of Bethe
ansatz solvable models characterized by the trigonomtric
matrix. In algebraic language this is the consequence of the
fundamental Yang-Baxter equation which leads to
g-commutation relations between the local operators consti-
tuting the transfer matrice$19]. One of such models,
g-boson totally asymmetric diffusion modgt], turns out to
be directly related to the model we consider. In order to see
the correspondence, let us formally write the distribution
P,(C) as a vector of state

P(C)) =2 P(O)C),
{ct
where C is a configuration of particles on the lattic€,
={n,,...,ny}, and the summation is over all configurations.
Consider the algebra generated by the oper%tp,rBj*,N,

(25

which act on the occupation number>0 of each sitg of
the lattice as follows:

Bjln;) = nj - 1) (26)
BjIn)) =[n; + 1gln; + 1) (27
Njnp) =nj|n;). (28)
The statd0) plays the role of vacuum state

Then, the master equatiq) with the rates given by Eq.
(20) can be written in the form of the imaginary time
Schrddinger equation

ward. We use the Bethe ansatz for the eigenfunction

PY(Xq, ... %) of Eq. (17):

p
PO, o xp) =t X Ay llZ0 (22
{o,.. .,O'p} i=1

Herez,, ..
over all p! permutations {oy,...,0,} of the numbers
(1,...,p), and the coordinates of particles are ordered in th
increasing ordek; <X, =<...<X,.

Substituting Eq(22) into Eq.(17) we obtain the expres-
sion for the eigenvalue,

(23

The numberyz, ..
equations,

.,Zp) are to be defined from the Bethe

.,Z, are complex numbers, the summation is taken

#|P{(C)) = — H[P(C)) (30

where the amiltoniarH is given in terms of the operators
(26) and(27),

H=-2 (B;B;-B/B)). (32)
J

One can directly check that the operatcﬁYst;,Nj satisfy

%he following commutation relations:

[B;.By] ="y, (32
[NBj]= - Bj . (33
[N B[1=B] (34)

These commutation relations and the Hamiltoniat) give
us, up to the change of notatiogs- g2, the definition of the
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g-boson totally asymmetric diffusion model. Obviously, the able configurations with at most one-particle occupation. The
dynamical rules of the ZRP with the rates given by E2) avalanches were accounted in the rates of transitions between
is nothing but the explicit realization of this hamiltonian. Its these configurations, generating infinite series in the master
integrability has been shown in Réf] via algebraic Bethe equation.
ansatz and two-particle diffusion on the infinite lattice has To use the eigenfunctions obtained for the construction of
been considered. Note that while in R¢7] the g-boson  particular solutions one should first question if they form
totally asymmetric diffusion model was initially defined in complete orthogonal basis. In general this question is not
terms ofqg-boson operators, we started from the ZRP witheasy to answer, as the set of solutions of the Bethe equations
arbitr_a_ry rates and came @ numbers as the integrability is not known. Some arguments have been gif@a1] for
condition. the the totally asymmetric exclusion process due to its con-
Let us first take a qualitative look at the behavior of thenection with the asymmetric six-vertex mod@p]. The long
ZRP resulted by the choig@0) of the ratesu(n) for different  time characteristics of the process can, however, be analyzed
values ofg. In the limitq— 1 theg-numbers degenerate into without discussing this question. To this end, we can use the
simple numbers. Therefore, the rates are giveruby=n,  properties of the largest eigenvalue for slightly modified
which corresponds to the diffusion of noninteracting par-equation, which describes the generating function of total
ticles. The Bethe equations in this case decouple to the formistance traveled by particlg®3]. The advantages of this
z'=1 as is expected in noninteracting case. In the domaimpproach are first that the uniqueness of the largest eigen-
q>1 the ratesu(n) grow exponentially witt, which corre-  value is guaranteed by Perron-Frobenius theorem. Second,
sponds to the interaction between particles effectively accelorresponding solution of the Bethe equations can be easily
erating free diffusive motion, i.e., the higher the density ofidentified as it corresponds to the stationary state of the pro-
particles the faster is their mean velocity. In the ligit->  cess. To give an example of application of the above results
the model is equivalent to=1 drop-push mod€]8], which  we perform this analysis in Sec. IV.
is confirmed by the same form of Bethe equatif@is In the
domain 0<q<1 the ratesu(n) grow monotonously from
(gq+1) for n=2 to 1/(1-q) for n— o, resulting in the inter- Ill. STRUCTURE OF THE STATIONARY STATE
action between particles slowing down the particle flow

compared to the one of noninteracting diffusing particles. Before going to the results of the analysis of the Bethe

- quations, let us first look at the structure of the stationary
Whe_n q—O_, all thei rates_ do not depend on the number Ofre;1easure of the model. It is characterized by the partition
particles, i.e.,u(n)=1. This casgalso referred to as phase

model[20]), can be mapped on the totally asymmetric ASEPfunCtlon

by insertion of one extra bond before every particle. At last, * N
in the domain -k q<0 the ratesu(n) also saturate to the ZINp= X 8y, + - +ny-pllfn), (35
constant 1(1-qg) with growth of n, though oscillating {ny,...np=1 i=1

around this value. As it has been mentioned above, the ZRRhere one-site weight(n)=1/[n] !, defined in Eq.(2), is
served as an exam_p_le of the nonequilibrium system with th%xpressed through thgfactorial[n],! =TI, [K],. In the limit
qond_ensatlon transition. In our case, however, the conplensa-_> 1, q factorial turns into simple factorial, as it should be
tion is absent as the ratesgn) defined above do not satisfy  he noninteracting case. The sum in E85) can be pre-
Evans criteria according to which the condensation in theented in the form of the contour integral
ZRP occurs if the rates saturate to a constant slower than EQN
2/n. 1 z

It is interesting that the recursion relatigtd) rewritten in Z(N.p) = 2 95 2P+l dz, (36)
terms of the quantityf1-u(n)] coincide with one for the ] . .
toppling probabilitiesw,,, imposed by the requirement of the Where the series(2)=_,f(n)z" can be summed to the in-
Bethe ansatz integrability in the ASAP. In fact, the ASAP canfinite product due to the-binomial theorenj24]: for |q <1
be represented as a special case of the discrete time ZRP A1 n
viewed from the reference frame moving together with an Fo=> M =(z(1-q);q) (37)
avalanche. This situation, however, is quite different from o (4 Qn
one considered here. In the moving reference frame all par-
ticles hop definitely to the next site except one from an activé
site, which is the only site with multiple occupation. In that o (2(1 = g~ Yy)ng D72
case quantity 1z, plays the role of probability of hopping Fi2=> q_l _(i =(z(qt-1);97Y...
of a particle out of this site. This dynamics leads to the n=0 (@59 )n
picture similar to the ZRP on an inhomogeneous lattice with (38)
one attractive site. Such ZRP was shown to exhibit the con-
densation transition. In terms of the avalanche processes it ldere, we used the notatid@; q),=I1i-5(1-adf) for shifted
the transition from the intermittent to continuous flow. De- g factorial. The above series are known aganalogs of the
spite the nonuniform stationary state of the ASAP in discreteexponential functiore?, which can be restored in the limit
time [17], its Bethe ansatz solution was based on the cong— 1. The presence off analogs of the functions, which
tinuous time picture considered on the ensemble of equiprobappear in the case of noninteracting particles, is a direct con-

d for|g/>1
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sequence of the replacement of simple numbersj lojyim- _ In(e™)
bers in the expression of the rates of hopping. In the thermo- Ao(y) = lim
dynamic limit, N— o, p—o0, p/N=p, the integral(36) can i
be calculated in the saddle point approximation. The equatdsing the ansatz4) and (22) for the eigenfunction of the
tion for the saddle poin, equation forF,(C) we can repeat all the above arguments.
_ , Then, if we make the variable change=1-€7z, the eigen-
p=2l0g'F(z), (39) value and the Bethe equations will simplify to the following
contains the logarithmic derivative d¥(z), which can be form:
evaluated using the product form Bfz) (37) and(38). As a

(45)

P
result we obtain the following relations betweryp, andq:
J e, & NCEEDIS (46)
o i=1
q '
=7(1-92 ——— (40)
e R ER ] Py —ax
eyN(l _Xi)—N - (_ 1)p—lH Al (47)
< g =1 %~ A%
=z(l-qghHY ———— 41
P=2(1-q % 1-z(qt-1)g™" “D In these variables the rhs of the Bethe equations coincides

with one for the partially asymmetric ASEP and the ASAP.

for |of <1 and|q[>1, respectively. Below the same equa- This aliows us to modify the techniques developed for the
tions will appear in a different context from the analysis of ypa1ysis of these processes.

Bethe ansatz equations. Then, the partition function, In the thermodynamic limitN— o, p—o, p/N=p, we
(F(zo) assume that the roots of the Bethe equati@T3 are distrib-
Z(N,p) = (42)  uted in the complex plain along some continuous conifour

p _ . ;
% with the analytical densitiR(x), so that the sum of values of
can be used to calculate stationary state correlations such asunctionf(x) at the roots is given by
the speedy=(u(n)), i.e., the average hopping rate out of a

. p
site S f(x) =N f F(RM)dX. (48)
_ZNp-1) _ 43 = g
Z(N,p) After taking the logarithm and replacing the sum by the in-

tegral, the system of Eg47) can be reformulated in terms of

or the probability distribution of the number of particles in asingle integral equation for the density. The particular solu-

site . . ) : "
tion corresponding to the largest eigenvalue is specified by
P() = f( )Z(N -1p-n 1 2z 44 the appropriate choice of branch of the logarithm. Then the
n) =f(n = . i i i
Z(N,p) [nly! F(zo) integral equation should be solved for a particular form of

the contour, which is not known as priori, and being first
assumed should be self-consistently checked after the solu-
tion has been obtained. In practice, however, analytical solu-

IV. THE LONG TIME BEHAVIOR FROM THE BETHE tion is possible in the very limited number of cases. Particu-

EQUATIONS larly, one, corresponding to the contour closed around zero,
To obtain any results beyond the stationary correlationgi€lds the density
one needs to analyze the above Bethe ansatz solution. Since o .
similar analysis has been done several times before RO(x) = 1 _ E X (49)
[21,25-27, we do not give the detailed calculations here. 27X P = 1-q

Instead we outline the main points of the solution to empha-
size the connection with the formulas obtained from thefor |g/<1 and
analysis of stationary measure. .
Consider the generating functidf(C)==%_,P(C, Y)e"", Y X"
whereP,(C,Y) is the joint probability for the system to be in RP(9 = aix\ Pt ngl 1-q™
the configurationC at timet and the total distance traveled
by particles beingr. The only difference of the equation for for |g/>1. This case corresponds to=0 and hence\(y)
F(C) from Eq.(3) is the coefficiene” before the first term  =0. SinceR®(x) is analytic in the ring 6<|x| <1, the inte-
under the sum in the rhs, which corresponds to the increasingration of it along any contour closed in this ring does not
of traveled distance by unity due to the hopping of one pardepend on its form. Therefore, to fix the form of the contour
ticle. At large time,t—, the behavior of the generating additional constraints are necessary. Such constraint appears
function of the distancd; traveled by particles up to time  if we require that the density preserves its analyticity wien
(e")=2F(C), is determined by the largest eigenvalue of deviates from zero and the contour becomes discontinuous.
the equation fotF(C): This constraint implies that the densRP)(x) vanishes at the

(50)
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break pointx., which is a crossing point of the contolirand  the initial closed contour by cutting out small segment con-
the real axis: necting two roots closest to the poixrt. For a function
which is defined by the expansion

RO(x,) = 0. (51)
This equation was first obtained by Bukman and Shore as a fx) = £, (56)
conical point condition for the asymmetric six-vertex model =1

[25]. It is remarkable that after the resummation of seriesin =~
Egs. (49) and (50), Eq. (51) coincides with Egs(40) and  this yields
(41) up to the replacements

p <]
%=2(1-0) and x=%@*-1) (52 2 100) = 2miN 2, ™R, (57

for |g/<1 and|g|>1, respectively. Remember thaj was
shown to coincide with the speed It will be clear below
that the same relation betweer (\g|,-o)/N andx, follows

minus and plus in power of being for|g|<1 and|g|>1,
respectively. Finally the point, enters all the results through
. . . the coefficientx andcynyq. It is related with the physi-
directly from the expression foxg(y) obtained from the Be- 5/ quantities th?noﬁgsh Eqérg)l, (41), (43), and(52). Ws uyse
the equations, without appealing to the partition function. s relation to write the final results as a function of speged

Further analysis is related with the calculation of finite densityp, and the parametey. Below we give the expression
size corrections to the above expressionR§(x), which for the largest eigenvalue in the scaling limigN32

makes possible to probe into the nonzero valuey.ofhis = constN—s oo

can be done with the help of method developed in Refs.

[21,23. Its essential part is the construction of the inverse No(y) =Nvy + kG(kyy). (58)
expansionZ Y(x) to the function of the number of roots ) ) )
Z(x)=[*R(x)dx near the break point. Since the derivative Here the functionG(x) has the following parametric form:
pf Z(x) in the therm.odynam|c limit vanishgsee Eq.(_51)], . G(X) = - Lig(C), (59)
its inverse expansion reveals the square root singularity,

which in its turn becomes the origin of 4N terms in the _

finite size expansion oR(x). As a result we obtain the fol- x == Ligp(C) (60
lowing parametric dependence Rfx) on y, both being rep-

i with Li a(x):Eflexk/ k® is the function of polylogarithm and
resented as functions of the same param@éter

the constant&,,k, are

11q'3'°°<i>” 1 [ull-q g -
_po__* + 47 (1 _ v Q) gq(v(1-0q)
TR N2 - g 2N NN e gea-aEt Y
3
F(” ' E) Cameta, ky= N9\ 270 (1 - Q) g0 (1 - @) (62)
X ——g 22 .3(0), (53)
s 121 2 for |q|<l, and
1 full-qgh diw@*-1)
3 k1= —=75 d , (63
) E( | )”F<n+5)cz ) NN e (ggge@i-npr
=—> | — | ———=20 .3(C). (54
4 N2 \oN) T d o nd(C). (54)

ko= - N2\ 2m(1-q gy (g -1)  (69)
Here R; and R(SO) are the Loraunt coefficients d®(x) and

for |g/>1, where
RO(x), respectively, defined as follows: g

. =
RX) = 2 Ry, (55) 9,(x) = ngl o (65)

S=—

The scaling form of the functio(x) was suggested to be
universal for Kardar-Parisi-Zhan@PZ) universality class
[28,29. Using the generating function obtained one can
evaluate all the cumulants of the traveled distance

Cone1s N Coneq are the coefficients of" in (-, and
In(Z}_,aX9), respectively, whera, are the coefficients of the
inverse expansiod1(x) near the poink.. The location of,
is to be self-consistently defined from the equatRix;) =0.
For the first three orders of 1N expansion the coefficients (YD "Ny

a, can be obtained from the inverse expansion of zero order !T}OT - W ' (66)
function Z@(x) = [*R@(x)dx, while R?(x) has been obtained =0

above. To evaluate the sum over the roots, one needs fthe large deviation function, I@)=Iim_.In P(Y,=x)/t,
integrate along the contodf, which can be obtained from can be also obtained as a Legendre transformatiog,of).
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V. SUMMARY AND DISCUSSION In connection with above results the following questions
_ appear. First, is it possible to generalize the proposed com-
To summarize, we apply the Bethe ansatz to solve zerdsination of the Bethe ansatz with stationary weights to any
range process with the totally asymmetric dynamics on @her processes with nonuniform stationary state, say asym-
ring. The eigenfunctions of the master equation have the,etric exclusion process with parallel update? The consider-
form of the Bethe function weighted with the stationary aion of the associated vertex models is also of interest. The
weights of corresponding particle configurations. The reigerent weights of vertex configurations depending on the
quirement of Bethe ansatz integrability leads to the speciah qer of vertices would result in the appearance of nonlocal
choice of the rates of hopping of pamclg .out of a site. Thej teraction. Second, can one apply the matrix product
rates should be numbers,[n],, generalizing the case of athoq to study the exclusion process with long range inter-
noninteracting diffusing particles, where the rate is equal tQtion associated with zero-range process considered here to
n, the number of particles at a site of departure. The noningrobe into spatially inhomogeneous situation, e.g., at the
teracting case can be restored in the ligit- 1. Two other  ghen chain. Appearance gfnumbers seems to be an indi-
limiting casesg=0 andq— =, reproduce well known totally  cation of this possibility. We expect that the matrix product
asymmetric exclusion process and drop-push model, respegnsatz should be again appropriately weighted with station-
tively. The case of generalis shown to be equivalent to the gy \veights of some homogeneous system. The consideration
g-boson totally asymmetric diffusion model. Continuing of' sych a system is attractive, as the extra paranteteuld
analogy with noninteracting case, we show that many quaryegyt in a reacher phase diagram compared to the usual to-
tities characterizing the stationary state correlations of th@a”y asymmetric exclusion process. Third, it is interesting to

model turn outy analogs of corresponding functions appear-estaplish correspondence of the large scale behavior of the
ing in the noninteracting case. To provide an example Obroposed process with KPZ equation.

application of the Bethe ansatz solution obtained, we derive
the expression for the large time limit of the generating func-
tion of cumulants of the total distance traveled by particles. It
has a universal form specific for KPZ universality class. The The author is grateful to V.B. Priezzhev and V.P. Spiri-

guestion whether thg-boson totally asymmetric diffusion donov for stimulating discussion. The work was supported
model belongs to KPZ class was addressed in concludingartially by FCT Grant No. SFR/BPD/11636/2002 and by the
remarks in Ref[7]. The result(58)<60) is an argument in grant of Russian Foundation for Basic Research Grant No.
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