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The eigenfunctions and eigenvalues of the master equation for zero-range process with totally asymmetric
dynamics on a ring are found exactly using the Bethe ansatz weighted with the stationary weights of particle
configurations. The Bethe ansatz applicability requires the rates of hopping of particles out of a site to be the
q numbersfngq. This is a generalization of the rates of hopping of noninteracting particles equal to the
occupation numbern of a site of departure. The noninteracting case can be restored in the limitq→1. The
limiting cases of the model forq=0,` correspond to the totally asymmetric exclusion process, and the
drop-push model, respectively. We analyze the partition function of the model and apply the Bethe ansatz to
evaluate the generating function of the total distance traveled by particles at large time in the scaling limit. In
case of nonzero interaction,qÞ1, the generating function has the universal scaling form specific for the
Kardar-Parizi-Zhang universality class.
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I. INTRODUCTION

The Bethe ansatz[1] is one of the most powerful tools to
get exact results for the systems with many interacting de-
grees of freedom in low dimensions. The exact solutions of
one-dimensional quantum spin chains and two-dimensional
vertex models are classical examples of its application[2]. In
the last decade, the Bethe ansatz was shown to be useful to
study one-dimensional stochastic processes[3,4]. The first
and most explored example is the asymmetric simple exclu-
sion process(ASEP), which serves as a testing ground for
many concepts of the nonequilibrium statistical physics[5].
Yet several other Bethe ansatz solvable models of nonequi-
librium processes have been proposed such as the asymmet-
ric diffusion models[6,7], generalizations of the drop-push
model [8–10], and the asymmetric avalanche process
(ASAP) [11].

Most of the models studied by the coordinate Bethe an-
satz have a common property. That is, a system evolves to
the stationary state, where all the particle configurations oc-
cur with the same probability. This property can be easily
understood from the structure of the Bethe eigenfunction.
Indeed, the stationary state is given by the ground state of
evolution operator, which is the eigenfunction with zero ei-
genvalue and momentum. Such Bethe function does not de-
pend on particle configuration at all and results in the equi-
probable ensemble. Except for a few successful attempts to
apply the Bethe ansatz to systems with nonuniform station-
ary state, such as the ASEP with blockage[12] or defect
particle [13], there is not much progress in this direction.

On the other hand many interesting physical phenomena
such as condensation in nonequilibrium systems[14], bound-
ary induced phase transitions[15,16], or intermittent-
continuous flow transition[17] become apparent from non-
trivial form of the stationary state, which changes

dramatically from one point of phase space to another. Typi-
cal example is the zero-range process(ZRP) served as a pro-
totype of a one-dimensional nonequilibrium system exhibit-
ing the condensation transition[14]. While its stationary
measure has been studied in detail[18], the full dynamical
description is still absent.

The aim of this paper is to obtain the Bethe ansatz solu-
tion of the ZRP. The paper is organized as follows. In Sec. II
we use the Bethe ansatz to solve the eigenfunction and ei-
genvalue problem for the master equation of the ZRP and
show that its applicability requires the rates of hopping of
particles out of a site to be theq numbers. We show that with
this choice of the rates the model is equivalent to theq-boson
totally asymmetric diffusion model. In Sec. III we obtain the
partition function of the ZRP with the rates obtained and
evaluate some stationary correlations. In Sec. IV we apply
the equations obtained from the Bethe ansatz solution to de-
rive the expression for the generating function of the total
distance traveled by particles in the large time limit. We sum-
marize the results in Sec. V.

II. MASTER EQUATION OF ZERO-RANGE PROCESS

Let us consider the system ofp particles on a ring con-
sisting ofN sites. Every site can hold an integer number of
particles. Every moment of time, one particle can leave any
occupied site, hopping to the next site clockwise. The rate of
hoppingusnid depends only on the occupation numberni of
the site of departurei. The stationary measure of such a
process has been found to be a product measure[14], i.e., the
probability of configurationhnij, specified by the occupation
numbershn1,n2, . . . ,nNj, is, up to the normalization factor,
given by the weight

Wshnijd = p
i=1

N

fsnid, s1d

where one-site weightfsnd is*Electronic address: povam@thsun1.jinr.ru
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fsnd = p
m=1

n
1

usmd
s2d

if n.0, and fs0d=1.
Let us consider the probabilityPtsn1, . . . ,nNd for N sites to

have occupation numbersn1, . . . ,nN at time t. It obeys the
master equation defined by the dynamics described:

]tPtsn1, . . . ,nNd = o
k=1

nkÞ0

N

fusnk−1 + 1dPts. . .,nk−1 + 1,nk − 1, . . .d

− usnkdPtsn1, . . . ,nNdg. s3d

Here, cyclic boundary condition,n−1;nN, is imposed.
Another way to specify the configuration of system is to

use the set of coordinates ofp particles hxij=hx1, . . . ,xpj,
rather than occupation numbershn1, . . . ,nNj, the two ways
being completely equivalent. While the explicit form of the
master equation in such notations is more complicated, it
turns out more appropriate for an analytic solution. The main
idea of the solution is to use the Bethe ansatz for the function
Pt

0sx1, . . . ,xpd related with the solution of the master equation
Ptsx1, . . . ,xpd as follows:

Ptsx1, . . . ,xpd = WshnijdPt
0sx1, . . . ,xpd. s4d

A. Two-particle sector

To explain the details we first consider the casep=2 sub-
sequently generalizing it to the case of arbitraryp. Without
loss of generality we can define

us1d ; 1, us2d ; u . 0. s5d

Now, we are going to show that the solution,Pt
0sx1,x2d, of

the master equation for noninteracting particles,

]tPt
0sx1,x2d = Pt

0sx1 − 1,x2d + Pt
0sx1,x2 − 1d − 2Pt

0sx1,x2d,

s6d

is related with the solutionPtsx1,x2d of the master equation
for the ZRP in the domainx1øx2 through the relation(4),
provided that the former satisfies certain constraint. Indeed,
when sx2−x1dù2, the equation for probabilityPtsx1,x2d for
the ZRP coincides with one for noninteracting particles(6).
For x1=x2−1=x the equation for the ZRP

]tPtsx,x + 1d = Ptsx − 1,xd + uPtsx,xd − 2Ptsx,x + 1d s7d

can be obtained from Eq.(6) if we define

Ptsx,xd =
1

u
Pt

0sx,xd, s8d

which is consistent with Eq.(4). In the casex2=x1=x, Eq.
(6) contains the termPt

0sx,x−1d which is beyond the “al-
lowed” regionx1øx2 and, thus, does not carry any physical
content. To restore the correct equation for the ZRP

]tPtsx,xd = Ptsx − 1,xd − uPtsx,xd, s9d

we can redefine this term to compensate the difference be-
tween Eqs.(6) and (9). As a result we get the following
constraint onPt

0sx1,x2d:

Pt
0sx,x − 1d = su − 1dPt

0sx − 1,xd − su − 2dPt
0sx,xd. s10d

Thus, the solution of the free Eq.(6), which satisfies the
constraint(10), gives the solution of the master equation for
the ZRP in the domainx1øx2. Now, we can use the Bethe
ansatz for the eigenfunction of the free equation(6)

Pt
0sx1,x2d = eltsA1,2z1

−x1z2
−x2 + A2,1z1

−x2z2
−x1d. s11d

Its substitution to Eq.(6) results in the expression for the
eigenvalue:

l = z1 + z2 − 2. s12d

The ansatz(11) to be consistent with the constraint(10), the
amplitudesA1,2 andA2,1 should satisfy the relation

A1,2

A2,1
= −

s2 − ud − s1 − udz2 − z1

s2 − ud − s1 − udz1 − z2
, s13d

which together with the cyclic boundary conditions,
Pt

0sx1,x2d=Pt
0sx2,x1+Nd, results in the system of two alge-

braic equations. The first one is the following

z1
−N = −

s2 − ud − s1 − udz2 − z1

s2 − ud − s1 − udz1 − z2
, s14d

while the second can be obtained by the changez1↔z2.

B. Many-particle sector

To generalize these results to the case of arbitraryp let us
consider the configuration with two neighboring sitessx
−1d andx having occupation numbersm andn, respectively.
Let us explicitly write down the terms of the master equation
corresponding to the transition into and from this configura-
tion due to a particle jump into and from the sitex, respec-
tively,

]tPt„. . .,sx − 1dm,sxdn, . . .…

= . . . +usm+ 1dPt„. . .,sx − 1dm+1,sxdn−1, . . .…

− usndPt„. . .,sx − 1dm,sxdn, . . .… + ¯ . s15d

Here sxdn denotesn successive argumentsx of the function
Ptsx1, . . . ,xpd. In terms ofPt

0sx1, . . . ,xpd, which is related to
Ptsx1, . . . ,xpd according to Eq.(4), this equation looks as
follows:

]tPt
0
„. . .,sx − 1dm,sxdn, . . .…

= ¯ + usnd 3 fPt
0
„. . .,sx − 1dm+1,sxdn−1, . . .…

− Pt
0
„. . .,sx − 1dm,sxdn, . . .…g + ¯ . s16d

Note that in this form the coefficient before the term in
square brackets is equal tousnd, i.e., does not depend on the
numberm of particles in the sitesx−1d. Thus, the rhs of the
master equation expressed throughPt

0sx1, . . . ,xpd is the sum
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of one-site factors similar to those in Eq.(16) for all non-
empty sites. Equating such term with one from the equation
for noninteracting particles,

]tPt
0sx1, . . . ,xpd = o

i=1

p

fPt
0s. . .,xi − 1, . . .d − Pt

0s. . .,xi, . . .dg,

s17d

we obtain the following constraint forPt
0sx1, . . . ,xpd,

fusnd − 1gPt
0
„. . .,sxd,sx + 1dn−1, . . .…

− o
j=2

n

Pt
0
„. . .,sx + 1d j−1,sxd,sx + 1dn−j, . . .…

− fusnd − ngPt
0
„. . .,sx + 1dn, . . .… = 0. s18d

Such relations for alln are to be understood as a redefinition
for the terms outside of allowed regionx1ø . . .øxp. The
Bethe ansatz to be applicable, the relation(18) should be
reducible to the two-particle constraint(10). This can be
proved by induction. To this end, we assume that similar
relations includinguskd are reducible for allk,n. Then
starting from the relation(18), which includes rateusnd, we
apply Eq. (10) to every pairsx,x−1d of arguments of the
function Pt

0s. . .d under the sum and require the result to be a
similar relation forusn−1d. We obtain the following recur-
rent formula for the rates

usnd = 1 − s1 − udusn − 1d, s19d

which can be solved in terms ofq numbers

usnd = fngq =
1 − qn

1 − q
, s20d

where

q = u − 1. s21d

Further generalization of two-particle results is straightfor-
ward. We use the Bethe ansatz for the eigenfunction
Pt

0sx1, . . . ,xpd of Eq. (17):

Pt
0sx1, . . . ,xpd = elt o

hs1,. . .,spj
Ahs1,. . .,spjp

i=1

p

zsi

−xi . s22d

Herez1, . . . ,zp are complex numbers, the summation is taken
over all p! permutations hs1, . . . ,snj of the numbers
s1, . . . ,pd, and the coordinates of particles are ordered in the
increasing orderx1øx2ø . . .øxp.

Substituting Eq.(22) into Eq. (17) we obtain the expres-
sion for the eigenvalue,

l = o
i=1

p

zi − p. s23d

The numberssz1, . . . ,zpd are to be defined from the Bethe
equations,

zi
−N = s− 1dp−1p

j=1

p
s2 − ud − s1 − udzj − zi

s2 − ud − s1 − udzi − zj
, s24d

which follow from the condition of compatibility of cyclic
boundary conditions with the constraint(10).

For the sake of convenience in the following discussion
we use the parameterq defined in Eq.(21) rather thanu. We
should note that the appearance ofq numbers as the condi-
tion of the Bethe ansatz integrability is not unexpected. The
notion ofq deformation naturally appears in context of Bethe
ansatz solvable models characterized by the trigonometricR
matrix. In algebraic language this is the consequence of the
fundamental Yang-Baxter equation which leads to
q-commutation relations between the local operators consti-
tuting the transfer matrices[19]. One of such models,
q-boson totally asymmetric diffusion model[7], turns out to
be directly related to the model we consider. In order to see
the correspondence, let us formally write the distribution
PtsCd as a vector of state

uPtsCdl = o
hCj

PtsCduCl, s25d

where C is a configuration of particles on the lattice,C
=hn1, . . . ,nNj, and the summation is over all configurations.
Consider the algebra generated by the operatorsBj ,Bj

+,N j,
which act on the occupation numbernj .0 of each sitej of
the lattice as follows:

Bjunjl = unj − 1l s26d

Bj
+unjl = fnj + 1gqunj + 1l s27d

N junjl = njunjl. s28d

The stateu0l plays the role of vacuum state

Bju0jl = 0. s29d

Then, the master equation(3) with the rates given by Eq.
(20) can be written in the form of the imaginary time
Schrödinger equation

]tuPtsCdl = − H uPtsCdl s30d

where the amiltonianH is given in terms of the operators
(26) and (27),

H = − o
j

sBj−1
+ Bj − Bj

+Bjd. s31d

One can directly check that the operatorsBj ,Bj
+,N j satisfy

the following commutation relations:

fBj,Bk
+g = qN jd jk, s32d

fNk,Bjg = − Bjd jk, s33d

fNk,Bj
+g = Bj

+d jk. s34d

These commutation relations and the Hamiltonian(31) give
us, up to the change of notationsq→q−2, the definition of the
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q-boson totally asymmetric diffusion model. Obviously, the
dynamical rules of the ZRP with the rates given by Eq.(20)
is nothing but the explicit realization of this hamiltonian. Its
integrability has been shown in Ref.[7] via algebraic Bethe
ansatz and two-particle diffusion on the infinite lattice has
been considered. Note that while in Ref.[7] the q-boson
totally asymmetric diffusion model was initially defined in
terms ofq-boson operators, we started from the ZRP with
arbitrary rates and came toq numbers as the integrability
condition.

Let us first take a qualitative look at the behavior of the
ZRP resulted by the choice(20) of the ratesusnd for different
values ofq. In the limit q→1 theq-numbers degenerate into
simple numbers. Therefore, the rates are given byusnd=n,
which corresponds to the diffusion of noninteracting par-
ticles. The Bethe equations in this case decouple to the form
zj

N=1 as is expected in noninteracting case. In the domain
q.1 the ratesusnd grow exponentially withn, which corre-
sponds to the interaction between particles effectively accel-
erating free diffusive motion, i.e., the higher the density of
particles the faster is their mean velocity. In the limitq→`
the model is equivalent ton=1 drop-push model[8], which
is confirmed by the same form of Bethe equations[9]. In the
domain 0,q,1 the ratesusnd grow monotonously from
sq+1d for n=2 to 1/s1−qd for n→`, resulting in the inter-
action between particles slowing down the particle flow
compared to the one of noninteracting diffusing particles.
When q=0, all the rates do not depend on the number of
particles, i.e.,usnd=1. This case(also referred to as phase
model[20]), can be mapped on the totally asymmetric ASEP
by insertion of one extra bond before every particle. At last,
in the domain −1,q,0 the ratesusnd also saturate to the
constant 1/s1−qd with growth of n, though oscillating
around this value. As it has been mentioned above, the ZRP
served as an example of the nonequilibrium system with the
condensation transition. In our case, however, the condensa-
tion is absent as the ratesusnd defined above do not satisfy
Evans criteria according to which the condensation in the
ZRP occurs if the rates saturate to a constant slower than
2/n.

It is interesting that the recursion relation(19) rewritten in
terms of the quantityf1−usndg coincide with one for the
toppling probabilitiesmn, imposed by the requirement of the
Bethe ansatz integrability in the ASAP. In fact, the ASAP can
be represented as a special case of the discrete time ZRP
viewed from the reference frame moving together with an
avalanche. This situation, however, is quite different from
one considered here. In the moving reference frame all par-
ticles hop definitely to the next site except one from an active
site, which is the only site with multiple occupation. In that
case quantity 1−mn plays the role of probability of hopping
of a particle out of this site. This dynamics leads to the
picture similar to the ZRP on an inhomogeneous lattice with
one attractive site. Such ZRP was shown to exhibit the con-
densation transition. In terms of the avalanche processes it is
the transition from the intermittent to continuous flow. De-
spite the nonuniform stationary state of the ASAP in discrete
time [17], its Bethe ansatz solution was based on the con-
tinuous time picture considered on the ensemble of equiprob-

able configurations with at most one-particle occupation. The
avalanches were accounted in the rates of transitions between
these configurations, generating infinite series in the master
equation.

To use the eigenfunctions obtained for the construction of
particular solutions one should first question if they form
complete orthogonal basis. In general this question is not
easy to answer, as the set of solutions of the Bethe equations
is not known. Some arguments have been given[3,21] for
the the totally asymmetric exclusion process due to its con-
nection with the asymmetric six-vertex model[22]. The long
time characteristics of the process can, however, be analyzed
without discussing this question. To this end, we can use the
properties of the largest eigenvalue for slightly modified
equation, which describes the generating function of total
distance traveled by particles[23]. The advantages of this
approach are first that the uniqueness of the largest eigen-
value is guaranteed by Perron-Frobenius theorem. Second,
corresponding solution of the Bethe equations can be easily
identified as it corresponds to the stationary state of the pro-
cess. To give an example of application of the above results
we perform this analysis in Sec. IV.

III. STRUCTURE OF THE STATIONARY STATE

Before going to the results of the analysis of the Bethe
equations, let us first look at the structure of the stationary
measure of the model. It is characterized by the partition
function

ZsN,pd = o
hn1,. . .,np=1j

`

dsn1, + ¯ + nN − pdp
i=1

N

fsnid, s35d

where one-site weightfsnd=1/fngq!, defined in Eq.(2), is
expressed through theq factorialfngq! = pk=1

n fkgq. In the limit
q→1, q factorial turns into simple factorial, as it should be
in the noninteracting case. The sum in Eq.(35) can be pre-
sented in the form of the contour integral

ZsN,pd =
1

2pi
r „Fszd…N

zp+1 dz, s36d

where the seriesFszd=on=0
` fsndzn can be summed to the in-

finite product due to theq-binomial theorem[24]: for uqu,1

Fszd = o
n=0

`
„zs1 − qd…n

sq;qdn
= „zs1 − qd;q…`

−1 s37d

and for uqu.1

Fszd = o
n=0

`
„zs1 − q−1d…nq−nsn−1d/2

sq−1;q−1dn
= „zsq−1 − 1d;q−1

…`.

s38d

Here, we used the notationsa;qdn=pk=0
n−1s1−aqkd for shifted

q factorial. The aboveq series are known asq analogs of the
exponential functionez, which can be restored in the limit
q→1. The presence ofq analogs of the functions, which
appear in the case of noninteracting particles, is a direct con-
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sequence of the replacement of simple numbers byq num-
bers in the expression of the rates of hopping. In the thermo-
dynamic limit, N→`, p→`, p/N=r, the integral(36) can
be calculated in the saddle point approximation. The equa-
tion for the saddle pointz0,

r = z0log8Fsz0d, s39d

contains the logarithmic derivative ofFszd, which can be
evaluated using the product form ofFszd (37) and(38). As a
result we obtain the following relations betweenz0,r, andq:

r = z0s1 − qdo
n=0

`
qn

1 − z0s1 − qdqn , s40d

r = z0s1 − q−1do
n=0

`
q−n

1 − z0sq−1 − 1dq−n s41d

for uqu,1 and uqu.1, respectively. Below the same equa-
tions will appear in a different context from the analysis of
Bethe ansatz equations. Then, the partition function,

ZsN,pd =
„Fsz0d…N

z0
p , s42d

can be used to calculate stationary state correlations such as
the speed,v=kusndl, i.e., the average hopping rate out of a
site

v =
ZsN,p − 1d

ZsN,pd
= z0 s43d

or the probability distribution of the number of particles in a
site

Psnd = fsnd
ZsN − 1,p − nd

ZsN,pd
=

1

fngq!

z0
n

Fsz0d
. s44d

IV. THE LONG TIME BEHAVIOR FROM THE BETHE
EQUATIONS

To obtain any results beyond the stationary correlations
one needs to analyze the above Bethe ansatz solution. Since
similar analysis has been done several times before
[21,25–27], we do not give the detailed calculations here.
Instead we outline the main points of the solution to empha-
size the connection with the formulas obtained from the
analysis of stationary measure.

Consider the generating functionFtsCd=oY=0
` PtsC,YdegY,

wherePtsC,Yd is the joint probability for the system to be in
the configurationC at time t and the total distance traveled
by particles beingY. The only difference of the equation for
FtsCd from Eq. (3) is the coefficienteg before the first term
under the sum in the rhs, which corresponds to the increasing
of traveled distance by unity due to the hopping of one par-
ticle. At large time,t→`, the behavior of the generating
function of the distanceYt traveled by particles up to timet,
kegYtl=oCFtsCd, is determined by the largest eigenvalue of
the equation forFtsCd:

l0sgd = lim
t→`

lnkegYtl
t

. s45d

Using the ansatz(4) and (22) for the eigenfunction of the
equation forFtsCd we can repeat all the above arguments.
Then, if we make the variable changexi =1−egzi, the eigen-
value and the Bethe equations will simplify to the following
form:

lsgd = − o
i=1

p

xi , s46d

egNs1 − xid−N = s− 1dp−1p
j=1

p
xi − qxj

xj − qxi
. s47d

In these variables the rhs of the Bethe equations coincides
with one for the partially asymmetric ASEP and the ASAP.
This allows us to modify the techniques developed for the
analysis of these processes.

In the thermodynamic limit,N→`, p→`, p/N=r, we
assume that the roots of the Bethe equations(47) are distrib-
uted in the complex plain along some continuous contourG
with the analytical densityRsxd, so that the sum of values of
a function fsxd at the roots is given by

o
i=1

p

fsxid = NE
G

fsxdRsxddx. s48d

After taking the logarithm and replacing the sum by the in-
tegral, the system of Eq.(47) can be reformulated in terms of
single integral equation for the density. The particular solu-
tion corresponding to the largest eigenvalue is specified by
the appropriate choice of branch of the logarithm. Then the
integral equation should be solved for a particular form of
the contour, which is not known asa priori, and being first
assumed should be self-consistently checked after the solu-
tion has been obtained. In practice, however, analytical solu-
tion is possible in the very limited number of cases. Particu-
larly, one, corresponding to the contour closed around zero,
yields the density

Rs0dsxd =
1

2pix
Sr − o

n=1

`
xn

1 − qnD s49d

for uqu,1 and

Rs0dsxd =
1

2pix
Sr + o

n=1

`
xn

1 − q−nD s50d

for uqu.1. This case corresponds tog=0 and hencelsgd
=0. SinceRs0dsxd is analytic in the ring 0, uxu,1, the inte-
gration of it along any contour closed in this ring does not
depend on its form. Therefore, to fix the form of the contour
additional constraints are necessary. Such constraint appears
if we require that the density preserves its analyticity wheng
deviates from zero and the contour becomes discontinuous.
This constraint implies that the densityRs0dsxd vanishes at the
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break pointxc, which is a crossing point of the contourG and
the real axis:

Rs0dsxcd = 0. s51d

This equation was first obtained by Bukman and Shore as a
conical point condition for the asymmetric six-vertex model
[25]. It is remarkable that after the resummation of series in
Eqs. (49) and (50), Eq. (51) coincides with Eqs.(40) and
(41) up to the replacements

xc = z0s1 − qd and xc = z0sq−1 − 1d s52d

for uqu,1 and uqu.1, respectively. Remember thatz0 was
shown to coincide with the speedv. It will be clear below
that the same relation betweenv=sl08ug=0d /N andxc follows
directly from the expression forl0sgd obtained from the Be-
the equations, without appealing to the partition function.

Further analysis is related with the calculation of finite
size corrections to the above expression ofRs0dsxd, which
makes possible to probe into the nonzero values ofg. This
can be done with the help of method developed in Refs.
[21,23]. Its essential part is the construction of the inverse
expansionZ−1sxd to the function of the number of roots
Zsxd=exRsxddx near the break pointxc. Since the derivative
of Zsxd in the thermodynamic limit vanishes[see Eq.(51)],
its inverse expansion reveals the square root singularity,
which in its turn becomes the origin of 1/ÎN terms in the
finite size expansion ofRsxd. As a result we obtain the fol-
lowing parametric dependence ofRsxd on g, both being rep-
resented as functions of the same parameterC:

Rs = Rs
s0d −

1

N3/2

1

2pi

qusu

1 − qusu o
n=0

` S i

2N
Dn

3

GSn +
3

2
D

pn+3
2

c2n+1,s

Î2i
Lin+3

2
sCd, s53d

g =
1

N3/2o
n=0

` S i

2N
DnGSn +

3

2
D

pn+3
2

c̄2n+1

Î2i
Lin+3

2
sCd. s54d

Here Rs and Rs
s0d are the Loraunt coefficients ofRsxd and

Rs0dsxd, respectively, defined as follows:

Rsxd = o
s=−`

`

Rs/x
s+1, s55d

c2n+1,s and c̄2n+1 are the coefficients ofxn in sok=0
` akx

kds and
lnsok=0

` akx
kd, respectively, wherean are the coefficients of the

inverse expansionZ−1sxd near the pointxc. The location ofxc

is to be self-consistently defined from the equationRsxcd=0.
For the first three orders of 1/ÎN expansion the coefficients
an can be obtained from the inverse expansion of zero order
functionZs0dsxd=exRs0dsxddx, while Rs0dsxd has been obtained
above. To evaluate the sum over the roots, one needs to
integrate along the contourG, which can be obtained from

the initial closed contour by cutting out small segment con-
necting two roots closest to the pointxc. For a function
which is defined by the expansion

fsxd = o
s=1

`

fsx
s, s56d

this yields

o
i=1

p

fsxid = 2piNo
s=1

`

q±sfsRs, s57d

minus and plus in power ofq being for uqu,1 and uqu.1,
respectively. Finally the pointxc enters all the results through
the coefficientsc2n+1,s and c̄2n+1. It is related with the physi-
cal quantities through Eqs.(40), (41), (43), and(52). We use
this relation to write the final results as a function of speedv,
densityr, and the parameterq. Below we give the expression
for the largest eigenvalue in the scaling limitgN3/2

=const,N→`:

l0sgd = Nvg + k1Gsk2gd. s58d

Here the functionGsxd has the following parametric form:

Gsxd = − Li5/2sCd, s59d

x = − Li3/2sCd s60d

with Liasxd=ok=1
` xk/ka is the function of polylogarithm and

the constantsk1,k2 are

k1 =
1

N3/2Îv/s1 − qd
8p

gq9„vs1 − qd…
fgq8„vs1 − qd…g5/2, s61d

k2 = N3/2Î2pvs1 − qdgq8„vs1 − qd… s62d

for uqu,1, and

k1 =
1

N3/2Îv/s1 − q−1d
8p

g1/q9 „vsq−1 − 1d…
fg1/q8 „vsq−1 − 1d…g5/2, s63d

k2 = − N3/2Î2pvs1 − q−1dg1/q8 „vsq−1 − 1d… s64d

for uqu.1, where

gnsxd = o
n=1

`
xn

1 − nn . s65d

The scaling form of the functionGsxd was suggested to be
universal for Kardar-Parisi-Zhang(KPZ) universality class
[28,29]. Using the generating function obtained one can
evaluate all the cumulants of the traveled distance

lim
t→`

kYt
nlc

t
= U ]nl0sgd

] gn U
g=0

. s66d

The large deviation function, ldfsxd=limt→`ln PsYt=xd / t,
can be also obtained as a Legendre transformation ofl0sgd.
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V. SUMMARY AND DISCUSSION

To summarize, we apply the Bethe ansatz to solve zero-
range process with the totally asymmetric dynamics on a
ring. The eigenfunctions of the master equation have the
form of the Bethe function weighted with the stationary
weights of corresponding particle configurations. The re-
quirement of Bethe ansatz integrability leads to the special
choice of the rates of hopping of particle out of a site. The
rates should beq numbers,fngq, generalizing the case of
noninteracting diffusing particles, where the rate is equal to
n, the number of particles at a site of departure. The nonin-
teracting case can be restored in the limitq→1. Two other
limiting cases,q=0 andq→`, reproduce well known totally
asymmetric exclusion process and drop-push model, respec-
tively. The case of generalq is shown to be equivalent to the
q-boson totally asymmetric diffusion model. Continuing
analogy with noninteracting case, we show that many quan-
tities characterizing the stationary state correlations of the
model turn outq analogs of corresponding functions appear-
ing in the noninteracting case. To provide an example of
application of the Bethe ansatz solution obtained, we derive
the expression for the large time limit of the generating func-
tion of cumulants of the total distance traveled by particles. It
has a universal form specific for KPZ universality class. The
question whether theq-boson totally asymmetric diffusion
model belongs to KPZ class was addressed in concluding
remarks in Ref.[7]. The result(58)–(60) is an argument in
favor of this assumption.

In connection with above results the following questions
appear. First, is it possible to generalize the proposed com-
bination of the Bethe ansatz with stationary weights to any
other processes with nonuniform stationary state, say asym-
metric exclusion process with parallel update? The consider-
ation of the associated vertex models is also of interest. The
different weights of vertex configurations depending on the
order of vertices would result in the appearance of nonlocal
interaction. Second, can one apply the matrix product
method to study the exclusion process with long range inter-
action associated with zero-range process considered here to
probe into spatially inhomogeneous situation, e.g., at the
open chain. Appearance ofq numbers seems to be an indi-
cation of this possibility. We expect that the matrix product
ansatz should be again appropriately weighted with station-
ary weights of some homogeneous system. The consideration
of such a system is attractive, as the extra parameterq could
result in a reacher phase diagram compared to the usual to-
tally asymmetric exclusion process. Third, it is interesting to
establish correspondence of the large scale behavior of the
proposed process with KPZ equation.
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